
Toolbox SimpleSVM Documentation

Gaëlle Loosli

Abstract
Here is a quick guide for SimpleSVM toolbox for Matlab. It contains

a quick start tour as well as some details about special features. We also
give an overview of the algorithm.

1 How to use it

1.1 Installation and test

After downloading the archive, you just need to unzip it where it is the most
convenient for you. Then you add your repertory in your matlab path ('addpath
('/home/.../simpleSVM/')'). You're done!
To check how well it works, you can launch 'graphicalInterface' if you are
running Matlab 7, or 'graphicalInterface_v6' if you are running a previous
version (I didn't check for Matlab 5 but it should work). You can also launch
'demo_online'. This little program will execute a serie of examples that uses
the di�erent features of the toolbox.

1.2 Quick start tour

Here we give a code sample that uses the toolbox the simplest way. It computes
the binary SVM solution for a checkers problem.

global svModel
[x,y,xt,yt]=dataset('Checkers',200,50,0.5); % generates data
donnees = data(x,y,xt,yt); % stores data
noyau = kernel('rbf',.9); % stores kernel
parametres = param(500,50,'binary','chol'); % stores parameters
trainSVM(donnees, noyau, parametres); % train the SVM
prediction = testSVM; % gives the results

% on the test set

1.3 Description of structures and main functions

This toolbox uses �ve structures to store the data, parameters and results.
The main one is a global variable called svModel that should be declared in
any program using the toolbox. It was made as a global variable for memory
purpose. Matlab makes a copy of every input parameter called for a function
which is a problem for large datasets. The global variable prevents it, but you
need to be careful about it.
This structure contains four structures:

1

Figure 1: Graphical Interface

• the dataset,

• the kernel,

• the parameters,

• the (output) model.

Data. It contains the train set, test set and their labels. This structure can
be created thanks to the function data as follows:
mydata = data(trainMatrix, trainLabels, testMatrix, testLabels);
mydata is now as shown:

mydata =

trainvec: [2x96 double]
trainlab: [96x1 double]
testvec: [2x48 double]
testlab: [48x1 double]

trainvec_t: []
trainlab_t: []
testvec_t: []
testlab_t: []

2

The four empty �elds are used to store original data when they are manipulated
(in multiclass algorithm for instance). Note that the orientation of the matrix
and vectors is important (each example is a column and the labels are a column
vector).

Kernel. It contains the type of kernel you want to use and its parameters.
This structure is created via the function kernel:
mykernel = kernel('rbf', 0.9);
mykernel is now as shown:

mykernel =

name: 'rbf'
sigma: 0.9000

The other type is 'poly' and take as a parameters the order and the coe�cient:
mykernel = kernel('poly', [5,0.5]);
mykernel is now as shown:

mykernel =

name: 'poly'
degree: 5
scale: 0.5000

Parameters. It contains all the parameters that are needed to run the SVM
algorithm. Some are optional or have default values that are almost always
good.
parametres = param(C,step,multiclass,method,gap,type,transfo,fid,span,verbose);
Here is an example of parameters you can set.

myparam =

C: 500
step: 50

multiclass: ''
method: 'chol'

gap: 1.0000e-005
type: 'none'

transformations: []
fid: 1

span: []
verbose: 1

• The C value is the smoothing value. It is the only one that it is essential to
set. Its default value is 100 if you create your structure with no argument,

• the step is the size of the subsets the algorithm consider when checking
the accuracy of the current solution. Values between 10 and 200 are good
enough (see the algorithm for more details),

3

• the multiclass is a string that can contains '1vs1' or '1vsall' or '1class'
if tour data have more or less than 2 classes,

• the method refers to the method the linear system is solved ('chol' for
cholesky decomposition or 'qr' for QR update decomposition),

• gap is the KKT gap and gives the accuracy required for the solution (re-
member that Matlab accuracy is 10−16 during computation. Do not give
0 for the gap, the algorithm could not converge because of the precision
of the machine!),

• the type is a string that use used for speci�c variation of the algorithm
such as 'invariant',

• the transformations is used for the invariances,

• fid is 1 by default and sets the default print to the screen. You can set it
the the �d of a text �le,

• span is not used in this version yet,

• if verbose is set to 0 nothing will be printed out.

Model. This structure is created by the algorithm and contains the results as
well as enough information to start another run from the last solution (really
useful for cross validation for instance, if you slightly change the parameters,
the solution will be close to the previous one. Here again more details are given
with the algorithm).

svModel.model =

iclass: 1
alpha: {[117x1 double]}

indices: {[117x1 double]}
mu: {[-1.0831]}
G1: {[500x500 double]}
G2: {[500x500 double]}

nbC: 53

• iclass basically gives the number of classi�ers that are stored in the
model. For instance it's one for binary classi�cation or 1class SVM and
the number of classes for the '1 against all' multiclass,

• alpha contains the lagrangian coe�cient of each support vector.

• indices gives the indices of the support vectors,

• mu is the bias of the solution (often design as b in SVM formulations),

• G1, G2 contains the cached kernel matrix decomposition,

• nbC is the number of bounded vectors among the support vectors.

dataset This function generates data for speci�c problems.

4

1.4 Run it!

Let's now give the main steps to use this toolbox.

1. Declare your global variable (global svModel;),

2. load or generate your data - make sure they have the good format,

3. create your data structure (at least 2 arguments) mydata,

4. create your param structure (at least 1 argument, be serious!) myparam,

5. create your kernel structure (2 arguments) mykernel,

6. train it! (trainSVM(mydata, mykernel, myparam)),

7. test it! (prediction <- testSVM).

You will �nd many examples of use in the example directory.

1.5 Special features

Multiclass 1vs1 Use it when you have more than 2 classes by setting param.multiclass
= '1vs1'. It will train a SVM for every couple of classes and decide the
output by a vote of these binary classi�ers,

Multiclass 1vsall use it when you have more than 2 classes by setting param.multiclass
= '1vsall'. It will train a SVM per class, considering all the other classes
as one. The decision is given by the maximum of the classi�ers,

One-Class use it to do some default detection or novelty detection, all the point
you are training on are considered as the same class. Set param.multiclass
= '1class',

Large scale dataset treatment (Chunking) try it if you think the solver is
really too slow for your huge dataset. You will use chunkingSVM(mydata,
mykernel, myparam, sizeChunk) instead of trainSVM,

Cross Validation use it to de�ne the best parameters among a list of parame-
ters (for the kernel!). [bestP, bestC, bestO, maxPerf, performance]
= crossvalidation(nbfolders, mydata, myparam, mykernel, bandwidths,
slacks, orders) where the last three arguments are vectors containing
the di�erent parameters to test,

Leave One Out use it to de�ne the best parameters among a list of parame-
ters (for the kernel!) when you have few training data. [bestP, bestC,
bestO, maxPerf, performance] = leaveOneOut(mydata, myparam, mykernel,
bandwidths, slacks, orders) where the last three arguments are vec-
tors containing the di�erent parameters to test,

Graphical interface try it!

Invariances Work in Progress... documentation will be available soon

DC SVM with non positive kernels, Work in Progress... documentation will be
available soon

5

2 Details about the SimpleSVM algorithms

The binary discrimination SVM problem with the sample (xi, yi), i = 1,m and
labels yi ∈ {−1, 1} is the solution of the following optimization problem under
constraints:

min
f,b,ξ

1
2
‖f‖2H + C

m∑
i=1

ξi

avec yi(f(xi) + b) > 1− ξi i = 1,m
et ξi ≥ 0, i = 1,m

(1)

where C is a scalar that adjusts the smoothness of the decision function, b is a
scalar called bias and ξi are slack variables.

The solution of this problem is also the saddle point of the lagrangian :

L(f, b, ξ,α,β) =
1
2
‖f‖2H+C

m∑
i=1

ξi−
m∑

i=1

αi

(
yi(f(xi+b))−1+ξi

)
−

m∑
i=1

βiξi (2)

from which we retrieve a part of the Kuhn-Tucker conditions :
∇fL(f, b, ξ,α,β) = 0
∂L(f, b, ξ,α,β)

∂b
= 0

∂L(f, b, ξ,α,β)
∂ξ

= 0

⇔

f(x)−

m∑
i=1

αiyik(x,xi) = 0

m∑
i=1

αiyi = 0

C − αi − βi = 0 i = 1,m

It follows that f(x)−
∑m

i=1 αiyik(x,xi). Thanks to this relation we can eliminate
f in the lagrangian to end up with the following dual formulation :

max
α∈IRm

− 1
2α>Gα + e>α

with α>y = 0
and 0 ≤ αi ≤ C i = 1,m

(3)

where G is the in�uence matrix of general term Gij = yiyjk(xi,xj) and e =
[1, . . . , 1]>. The SVM solution is then given by solving a quadratic optimization
problem of dimension m under box constraints.

2.1 Relations between primal and dual variables

In the preceding problem each unknown αi can be interpreted as the in�uence
of the example (xi, yi) in the solution. Taking into account that only the points
lying on the frontiers are important for the discrimination task and that there is
a priori a few number of them, a large number of α coe�cients will be equal to
0. Than it is pertinent to separate the m unknown into three groups of points :
[1,m] = Is ∪ I0 ∪ Ic, de�ned according to the associated Lagrange multipliers
values α :

[Is] the group of supports points is the one of the candidates support vec-
tors. They are the ones for which 0 < αi < C. Those points are lying
inside the box constraints. This group is also called working set since
it contains the vectors we have to work out to know their associated α
values,

6

[Ic] the group of bounded points is the one for which αi = C. These
points are lying on the box boundaries. If these points are to close or
completely mixed with the opposite class, we bound their contribution to
the solution. Doing so we regularize the solution. In the �nal solution, all
those points will have their α value �xed to C : they will be constraint
and will in�uence the solution,

[I0] the group of inactive points is the one for which αi = 0. These points
are also lying on the box boundaries. In this case the vectors are far from
the frontier between the classes. In the �nal solution, all those points will
have their α value �xed to 0 : they will be constraint but will not in�uence
the solution.

These three groups lead to another formulation of the optimization problem :
max

α∈IRm
− 1

2α>Gα + e>α

with α>y = 0
and 0 ≤ αi ≤ C i = Is

and αi = 0 i ∈ I0

and αi = C i ∈ Ic

(4)

The relation between the dual parameters obtained in equation 4 and the primal
parameters (equation 1) is important. We can show it by writing the lagrangian
of the dual problem (equation 4) as a minimization problem :

L(α, λ,µ,ν) = 1
2α>Gα− e>α− λα>y − ν>α + µ>(α− Ce) (5)

where the Lagrange multipliers α,µ and ν have to be positive. This la-
grangian leads us back to the primal problem and can be compared to the one
in equation 2 when replacing f by α :

L(α, b, ξ,β) = 1
2α>Gα− e>α− bα>y + ξ>(α− β + Ce) (6)

We consider three di�erent cases (Is, I0 et Ic) to �nd the equivalence between
the parameters.

[0 < α < C]: in this case the Kuhn-Tucker condition that makes the lagrangian's
gradient with respect to α vanishing is writen : Gα+λy−e = 0. We also
have the initial constraint saturated, that is to say yi(f(xi) + b) = 1. We
can re-write it as Gα + by− e = 0. The Lagrange multiplier λ associated
to the equality constraint is thus equal to the bias λ = b.

[α = 0]: in this case ξ = µ = 0 and ν = Gα+ by− e. If the Lagrange multiplier
is positive, the model's prediction minus one has to be positive too.

[α = C]: in this case ξ 6= 0,ν = 0 and µ = −Gα− by + e = ξ. If the Lagrange
multiplier is positive, the slack variable is positive too. This imposes to
the model's prediction minus one to be negative in that case.

These relations are summarized in table 1. Checking these optimality conditions
is equivalent to computing Gα + by − e and then making sure that on the one
hand for each non support vector (α = 0) this quantity is positive and on the
other hand for each bounded point (α = C) this quantity is negative.
To solve this problem in a e�cient way it is clever to take into account the
points situation regarding the constraints that are satis�ed or not.

7

Set Initial constraints Primal constraints Dual constraints
I0 yi(f(xi) + b) > 1 α = 0, ξ = 0 ν > 0, µ = 0
Ic yi(f(xi) + b) = 1− ξi α = C, ξ > 0 ν = 0, µ > 0
Is yi(f(xi) + b) = 1 0 < α < C, ξ = 0 ν = 0, µ = 0

Table 1: Constraints for the three type of variables.

2.2 Outlines of the method

The goal of any SVM algorithm is double : The training set has to be split into
the three groups. Once this is done, the problem has to be solved. It turns out
that this second phase is relatively simpler than the �rst one. Let us assume
that we know the point's repartition (Is, I0 et Ic are given) : then the inequality
constraints are useless (they are implicitly contained in the de�nition of the
three groups). The only αi that remain unknown are for i ∈ Is. Indeed by
de�nition αi = 0 for i ∈ I0 and αi = C for i ∈ Ic. The remaining αi are found
resolving the following optimization problem :{

max
α∈IR|Is|

− 1
2α>Gsα + e>s α

with α>ys + Ce>c yC = 0
(7)

with es = e(Is) + 2CG(Is, Ic)e(Ic), Gs = G(Is, Is), ys = y(Is), yc = y(Ic)
and ec is a vector of ones. Note here that the dimension of the problem is
the cardinal of the set Is (that can be smaller than m, the initial dimension of
the problem). The Khun-Tucker conditions gives the system to solve that will
provide the coe�cients α that are still unknown :(

Gs ys

y>s 0

) (
α
λ

)
=

(
es

−Ce>c yc

)
(8)

If the solution given by this system contained a component violating the con-
straints (a negative or above C component), then it would mean that the initial
points repartition Is, I0 and Ic was wrong. This component has then to be
removed from Is and be put in I0 or Ic.
In the case all the components α �t the constraints, it does not necessarily
mean that we have found the optimum solution. We still have to check that
the positivity constraints on the associated Lagrange multipliers (cf. previous
paragraph) are respected. To do so we check that for each point belonging to
I0, Gα + by− e > 0, and that for each point belonging to Ic, Gα + by− e < 0.
If it is not, the point that violates the constraints is removed from its group I0

or Ic and put in Is.
We have now given the algorithm principle. It is an iterative algorithm which
adds or removes points to Is one by one at each step. We will see that the cost
strictly decreases at each step, which guaranties that the method converges.
Moreover, the matrices Gs only di�ers by one row and one column from the
previous step. Thus we can compute the new solution from the previous one.
Doing so we reduce the complexity of each step from O(n3) to O(n2).
The algorithm (1) summarizes the steps of simpleSVM algorithm.
The algorithm stops when α̃∗ is admissible and all the points from I0 and Ic

satisfy their constraints. Then no admissible descent direction exists anymore.

8

Algorithm 1 : SimpleSVM

1. (Is, I0,Ic)← initialise
while minimumReached=FALSE

2. (α,λ)← solve the system without constraints(Is)
if ∃αi ≤ 0 or ∃αi ≥ C

3.1 project α inside the admissible set
3.2 transfers the associated point from Is to I0 or Ic

else
4. look for the best candidate xcand in Ic and I0

if xcand is found
5. transfer xcand to Is

else
6. minimumReached ← TRUE

end if
end if

end while

Since the solution depends on the repartition between Is, I0 and Ic and since
there exists only a �nite number of points and thus of combinations, knowing
that the cost strictly decreases at each steps, the algorithm cannot loop and
reaches the global solution in a �nite time.

3 Known bugs

We are waiting for you to report bugs and make comments! One remark: do
not hesitate to use the clear global svModel or clear all if you feel there's
something really wrong going on, global variables are somehow... dirty!

9

	How to use it
	Installation and test
	Quick start tour
	Description of structures and main functions
	Run it!
	Special features

	Details about the SimpleSVM algorithms
	Relations between primal and dual variables
	Outlines of the method

	Known bugs

